
《分数与除法》说课稿
作为一无名无私奉献的教育工作者,通常需要准备好一份说课稿,编写说课稿助于积累教学经验,不断提高教学质量。说课稿应该怎么写呢?下面是小编为大家收集的《分数与除法》说课稿,欢迎大家分享。
《分数与除法》说课稿1一.说教材。
我说课的内容是人教版课程标准实验教科书六年级上册的分数除法单元中的例1和例2。例1是分数除法的意义认识,例2是分数除以整数的计算。在这之前学生已经掌握了整数除法的意义和分数乘法的意义及计算,而本课的学习将为统一分数除法计算法则打下基础。
例1先是整数除法回顾,再由100克=1/10千克,从而引出分数除法算式,通过类比使学生认识到分数除法的意义与整数除法的意义相同,都是‘已知两个因数的积和其中一个因数,求另一个因数的运算’。例2是分数除以整数的计算教学,意在通过让学生进行折纸实验、验证,引导学生将‘图’和‘式’进行对照分析,从而发现算法,感悟算理,同时也初步感受数形结合的思想方法。
根据刚才对教材的理解,本节课的教学目标是:
1. 理解分数除法的意义与整数除法的意义相同。
2. 理解分数除以整数的计算原理,掌握计算方法,并能正确的进行计算。
3. 经历观察、猜测、实验、验证和归纳的过程,感受数形结合的思想方法,并从中发展抽象思维能力。
本课的重点是理解分数除法的意义和分数除以整数的计算方法;
本课的难点是分数除法一般算法的理解。这是因为要将除以一个数转化为乘以它的倒数,在运算形式上由除法转化为乘法,变化较大,而学生往往由于思维的定势,一时不容易接受。所以本课的关键是如何引导学生在实验和验证中自主体验和感悟。
二.说教法、学法。
为了达成教学目标,本课的教学必须贯彻以学生为主体,坚持启发与发现法相结合的教学方法,引导学生大胆猜想,动手实践,在体验中、在交流中发现规律。
学习方法上强调以探究学习法为主。认知结构理论告诉我们,学习是学生积极主动的内化过程。只有通过主动参与获得的知识,才是有意义的。因此,在重难点的学习上,通过折纸实验与验证,数形结合,从而实现真正的理解。
三.说教学过程。
(一) 类比迁移,理解分数除法的意义。
1. 乘法意义对照。
(出示3盒标注100克的水果糖)问:共重多少千克?
这个问题的提法比教材中略有不同。教材中是先提问:共重多少克?借此引出整数乘法、整数除法算式,然后通过100克=1/10千克引出相应的分数乘除法。根据我以往教学的经验,这样的处理不少学生在类比迁移时有一定的障碍,并不容易实现。
而在问题中直接以千克为单位,首先因为问题更有挑战性而能更有效激发学生的兴趣,其次还能引出三种形式的算式:
○1整数形式:100×3=300(克)=0.3(千克)
○2小数形式:100克=0.1千克;0.1×3=0.3(千克)
○3分数形式: 100克=1/10千克;1/10×3=3/10(千克)
这样的处理不仅有利于学生系统建构整个乘法的意义,而且,还能促使学生自然而然的把分数除法意义与整数除法、小数除法意义统一起来。这样一来,接下去的理解就显得水到渠成啦。
2.除法意义对照。
在改编成求‘每盒重多少千克’的问题情境下,引出相应的三个除法算式:
○1300÷3=100(克)=0.1(千克)
○20.3÷3=0.1(千克)
○33/10÷3=1/10(千克)
并进一步引导学生进行比较,从而理解分数除法的意义与整数、小数除法的意义相同。
3.练习:
12×17= 204 2.8×1.5= 4.2 2/3×4=8/3
204÷12=( ) 4.2÷1.5=( ) 8/3÷4=( )
204÷17=( ) 4.2÷2.8=( ) 8/3÷2/3=( )
在前两步理解意义的基础上,及时安排相应的巩固练习。分别是已知三种形式的乘法算式,不计算直接写出相应除法算式的商。如:2/3×4=8/3,8/3÷4=( ),8/3÷2/3=( )
(二)自主探究,掌握算法。
第一步:教学4/5÷2
1.创设问题情境:没有已知的乘法算式,你还会计算4/5÷2这道分数除法吗?
○1鼓励尝试计算;
○2组织全班交流;
(预设学生反馈):
方法A.因为2×2/5=4/5,所以4/5÷2=2/5
这是受刚才所学除法意义的影响,迁移而来;
方法B.4/5÷2= 4÷2/5=2/5
大部分是看到4与2的倍数关系,想当然的在计算;可能小部分能从数的组成进行解释。
方法C.4/5÷2=4/5×1/2=2/5
课前预习过;但能说清为什么的恐怕很少。
2. 引导理解方法B和C。
○1师:4/5里面有()个()/(),÷2表示平均分成两份,每份有()个()/();
○2师:在长方形里折一折,涂一涂,再来解释两种方法。
○3师:还有不同的分法吗?
在先请学生进行解释的基础上,引导思考: 4/5里面有()个()/(),÷2表示平均分成两份,每份有()个()/();在部分学生有所感悟的基础上,引导学生进一步验证,根据课前提供的`五等分的长方形纸片,要求学生折一折、涂一涂,再来进行解释。
由于已经将长方形纵向五等分,因此从直观上很容易理解方法B。再进一步启发:还有不同的折法吗?鼓励学生寻求不同方法,比如说横向折,沿对角线折等等;
通过这些折法的体验,使学生深刻认识到,不管怎么折,只要平均分成两份,每份始终是它的12,也就是说始终可以将÷2转化为乘以1/2。
第二步:教学4/5÷3
1.初步比较:你觉得哪种方法好?
2.尝试计算4/5÷3;
(要求先折一折,涂一涂,再计算) (课前提供五等分的长方形纸片)
反馈,追问:
○1 平均分成3份,每份是( )的1/3? 求一个数的几分之几怎么计算?
○2为什么不选A或B这两种方法?从中说明方法C比A和B相比有什么优点?
首先请学生对两种方法进行初步比较:你觉得哪种方法好?这时并不急于统一思想,转而请学生计算4/5÷3。也要求根据课前提供的五等分长方形纸片先折一折,涂一涂,再计算。
然后进行反馈,并引导思考:
○1 平均分成3份,每份是4/5的(1)/(3)? 求一个数的几分之几怎么计算? ……此处隐藏22295个字……趣又能提高同学们的能力。同时还能活跃课堂气氛,让同学们体会到生活中处处有数学,数学就来源于生活,同时课堂变的丰富多彩让同学们能够学着乐乐着学。
6、布置作业
最后一个环节是布置作业,我的说课到此就结束了
《分数与除法》说课稿15一、说教材:
1、教材的地位和作用:
这部分内容属于“数与代数”中这一领域,是在学过分数乘法应用题、分数除法的意义和计算法则的基础上进行教学的,为学习分数混合运算奠定基础。
2、学情分析:
五年级的学生对分数有一定的理解,掌握了分数乘法、除法的意义和计算法则,认识了倒数,能运用等式的性质解简单的方程。
3、教学目标:
(1)能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。
(2)在解方程中,巩固分数除法的计算方法。
(3)通过解决问题切实体会数学与生活的密切联系,懂得学习数学的意义和重要性,激发学生热爱数学的情感,建立学好数学的信心。
4、教学重点和难点:
教学重点:能用方程正确解答分数除法应用题。
教学难点:体会方程是解决实际问题的重要模型。
二、说教法、学法:
美国教育心理学家奥苏贝尔曾说:影响学生学习的重要原因是学生已经知道了什么。
苏霍姆林斯基也说过:“在人的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、成功者,而在儿童的精神世界中,这种需要特别强烈。”
所以我从学生已有的知识和生活经验出发,收集信息、独立思考、发现关系、提出问题,通过合作交流的方式解决问题。提倡解决问题策略的多样化,允许学生表达自己对问题的理解,选择自己最合适的解决方法,变“教师教”为“引导学”。
三、说教学流程:
基于上述分析,我为本节课设计了以下四个基本环节:
引入新课、收集信息——比较发现、得出结论——实践应用、拓展提高——全课小节、达成共识。
(一)引入新课、收集信息:
1、创设情境、引入新课:
法国著名教育家、思想家卢梭说:问题不在于教他各种学问,而在于培养他有爱好学问的兴趣,而且在这种兴趣充分增长起来的时候,教他以研究学问的方法。
兴趣是学习的内动力,为了激发学生的兴趣,课程伊始我先播放一段轻松、欢快歌曲。(播放视频)
在这轻松、和谐的氛围里,孩子们愿意把他们喜欢的课间活动讲给我听?
2、收集信息、提出问题:
随即出示教材中的情境图,从学生感兴趣的活动场景引入,获取基本的数学信息,提出有价值的数学问题,并试着解决。
信息:图上有(20)人参加活动;跳绳的有(6)人;
踢毽子的有(3)人;打篮球的有(4)人;
跑步的有(3)人;踢足球的有(4)人。
问题:跑步的人数是踢球的几分之几?
踢毽子的是跳绳的几分之几?
(二)比较发现、得出结论:
1、引导发现问题:
教师设疑,引导学生发现问题,操场上是有20人在活动吗?学生一定会发现这幅图只呈现了操场的一部分,显然答案20人是错误的。
请同学猜一猜操场上一共有多少人。学生沉思片刻后会汇报许多数据。
教师进一步引导:究竟谁的答案是正确的呢?想不想验证一下?
2、给出解决问题的关键条件:
跳绳的小朋友是操场上参加活动总人数的 ,
3、用自己喜欢的方法解决,在小组中交流并汇报。
学生在试做的过程中会出现以下几种情况:借助线段图用除法计算、数份数的方法、分析数量关系、列方程解。无论是哪种方法,教师都应该给予肯定与鼓励。
让学生在交流中感受不同方法的思维特点,由学习者成为研究者,体验成功的快乐。再引导学生进行系统的分析,找出解决问题最简便的方法。
在比较过程中,学生一定也许会说:前两种方法书写少、计算快、用起来顺手也很简便呀!教师不要立即否定,扼杀孩子们的思考意识;也不要为了完成教学任务急于往下进行。
这时教师可以引导:其实我也很欣赏你的方法,谁能把你认为简便的方法的思路说给我们听?
通过讨论的平台,让大家发现用方程解决就是旧知识的综合运用,属于顺向思维,虽然写起来麻烦,但思考起来会更加容易。
最终得出结论:用方程解决分数除法的实际问题比较简便。
4、巩固练习、深入理解:
为了巩固这种方法,我把教材中的试一试,设计成两个板块:一是口答,二是笔练。这样不仅提高了学生的计算速度,也有助于学生掌握本节的重点。
口答:说出他们的数量关系:
①打篮球的人数是踢足球人数的4/9
②踢毽子的人数是踢足球人数的1/3
③某双休日共有9天,是这个月总天数的3/10
笔练:通过上述数量关系直接列出方程,并解答。
I、操场上打篮球的有4人。
(1)打篮球的人数是踢足球人数的4/9,踢足球的有多少人?
(2)踢毽子的人数是踢足球人数的1/3,踢毽子的有多少人?
II、某双休日共有9天,是这个月总天数的3/10,这个月
有多少天?
(三)实践应用,拓展提高。
练习内容由三个部分组成,即:基本练习、对比练习、拓展练习。
为了实现教学目标,我们从生活中寻找素材,引入课堂,让学生认识到现实生活中蕴含着大量的.数学信息,数学在现实世界中有着广泛的应用,增强学生的应用意识,切实体会数学与生活的密切联系。
如:第一题我先播放一段视频,让学生弄清什么是打折,及八折的意思,再进行解答。
后面的两道题也与我们的生活息息相关。
一、基本练习:解方程:
х/5=7 3х/4=4 5х/8= 8х=4/7 2х3=6 3х/8=1
二、对比练习:
1、操场上有27人参加活动,踢足球的人数占总人数的 ,踢足球的有多少人?
2、操场上有9人在踢足球,占参加活动总人数的 ,操场上一共有多少人?
三、拓展练习:
1、原价是多少元?
生活中我们经常会遇到商场内物品打折的情况,你知道
打折是什么意思吗?
通过课前收集生活中的图片信息,让学生弄清八折的意思,再进行解答。
2、李健的身高是150厘米。
(1)李健的身高是妈妈身高的5/16,妈妈的身高是多少厘米?
(2)妈妈的身高是爸爸身高的8/9,爸爸的身高是多少厘米?3、鸡、鹅的孵化期分别是多少天?
鸭的孵化期是28天;
鸡的孵化期是鸭的3/4;
鸭的孵化期是鹅的14/15;
(四)全课小节,让学生谈一谈在本节课里的收获,总结在学习中的不足。